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Abstract 

We present an extended execution algorithm for executing 
plans represented using simple temporal networks with 
uncertainty. We presume that the network to be executed is 
dynamically controllable. Our extension allows for skipping 
tasks that can be shrunk to zero duration if subsequent tasks 
are ready to start execution. The asymptotic time 
complexity of the technique scales as a polynomial of the 
number of timepoints that could execute simultaneously. 

Introduction  
One advantage of formulating plans conservatively is that 
we can know a-priori that the execution will (or probably 
will) succeed. One disadvantage of this approach is that we 
waste time and resources.  In practice, we often skip the 
execution of tasks that lead to a goal if the tasks are 
deemed to be superfluous.  We present a technique for 
modeling “skippable” tasks and skipping these tasks 
during execution. 

Simple temporal networks (STNs) [2] provide a rich 
framework to connect inter-related tasks, execute the tasks, 
and monitor the execution. Unfortunately, STNs presume 
that the constructors and executors of these task networks 
have control over the duration of the tasks being executed, 
which is not always the case. Simple temporal networks 
with uncertainty (STNUs) [12] increase the 
representational capability of STNs by including a labeling 
of those intervals that are uncertain (contingent). Previous 
work by [7] has shown that we can know that an STNU is 
executable if our executor only changes those durations 
that are not uncertain (free) for future tasks, i.e., the STNU 
is dynamically controllable. The execution strategy of [7] 
presumed that we wouldn’t skip tasks—the technique we 
present here allows us to skip tasks by shrinking their 
associated durations to 0. This is implemented in the 
Mission Data System [3] software framework as part of the 
timepoint firing algorithm. 

Importance 

If an execution agent can incorporate runtime feedback, 
this can be used to optimize plan execution in two ways: 1) 
reduction of resource utilization and 2) reduction of make-
span. We can avoid using resources during execution, thus 

redundancy can be built into a plan but also can be ignored 
if it is not required. Additionally, we can reduce the make-
span of an executed plan with respect to the original plan. 
Both resource usage and make-span are useful metrics for 
plan quality, thus our technique provides for on-line plan 
optimization. 

Preliminaries 

Simple Temporal Networks with Uncertainty 

A simple temporal network (STN) can be represented as a 
directed, edge-labeled graph G = (N, E) with real-valued, 
edge-label functions l and u. The nodes of the graph 
represent timepoints. A timepoint refers to a specific, yet 
possibly unspecified, moment in time. The edges of the 
graph, along with the l and u labels, represent temporal 
constraints between timepoints. More specifically, the l 
and u values bound the duration allowed between two 
timepoints. (Figure 1 shows two timepoints and a temporal 
constraint pictorially.) 

n1 e1 n2

l(e1) = 10
u(e1) = 20

≡ n1
e1

[10, 20] n2

 
Figure 1 – Timepoint and temporal constraint 

representation 

An execution of an STN is a real-valued, node labeling T 
of G that adheres to the temporal constraints. Thus, for all 
edges e = (n1, n2) ∈ E, l(e) ≤ T(n2) – T(n1) ≤ u(e) implies 
that T is a valid execution. Checking for STN executability 
is computable in polynomial time [2]. (This is equivalent 
to checking consistency of the STN.) But, this assumes 
that we can know (and control) with certainty the duration 
of each interval represented by the temporal constraints 
before execution, which is not the case in many real 
domains. Thus we need to consider uncertainty for specific 
intervals. 

A simple temporal network with uncertainty (STNU) is an 
STN with the addition of set C ⊆ E. Edges contained in C 
are temporal intervals that are determined by “nature” (but 
still adhere to the l and u constraints). We refer to such 
intervals as contingent (as Figure 2), otherwise the 



 
intervals are referred to as being free (as  Figure 3). Any 
execution strategy must accommodate the contingent 
edges. Thus, T for an STNU is partially defined by nature, 
and partially defined by us. There are a number of ways to 
characterize an STNU with respect to execution. An STNU 
is strongly controllable if we can devise a fixed valued T 
that accommodates all possible assignments by nature to T. 
(We learn nature’s assignment after making our 
assignment.)  An STNU is weakly controllable if for all 
possible assignments of T by nature an assignment of T by 
us is possible. (We learn nature’s assignment before 
making our assignment.)  An STNU is dynamically 
controllable if for all possible assignments of T by nature 
at execution time we can assign (or reassign) T for 
intervals not yet executed. (We learn nature’s assignment 
during execution, and likewise make our assignment 
during execution.) Strong controllability [12] and dynamic 
controllability [7] are decidable in polynomial time, while 
the task of deciding weak controllability is co-NP complete 
[5].∉∈ 

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∈ C

≡ n1
e1

[10, 20] n2

 
Figure 2  Contingent edge representation 

n1 e1 n2

l(e1) = 10
u(e1) = 20
e1 ∉ C

≡ n1
e1

[10, 20] n2

 
Figure 3  Free edge representation 

This paper focuses on the execution of STNUs that are 
dynamically controllable. With this comes the requirement 
for waits—periods that are determined by nature and the 
result of computing dynamic controllability. Waits cause 
delays in normally free intervals to ensure the 
accommodation of the contingent intervals, thus a wait 
might make a free interval partially contingent. We return 
to the issue of waits later. 

Concerning notation, we use E as the edge set of G = (N, 
E) of the STNU representing the plan being discussed. 
Also, we presume that for all edges e ∈ E, l(e) ≥ 0. Any 
unlabeled edge e in our figures is assumed to have l(e) = 0 
and u(e) = ∞. 

Plan Representation 

A plan is a network of tasks and temporal constraints. A 
task consists of a temporal constraint e = (n1, n2) in the 
STNU, the timepoints n1 and n2 associated with e, and the 
associated values represented by the functions l(e), u(e), 
and set C. We refer to n1 as the start-time of the task, and 
n2 as the end-time of the task. For simplicity, when 

referring to a task we will only refer to its associated edge 
in the STNU. This characterizes the temporal extent of the 
task but not its preconditions, in-conditions, or effects. To 
provide these, we include the additional condition-valued, 
edge-label functions precond, incond, and effect. While 
conditions have a rich history of semantics and 
representation, for our purposes a condition is a predicate 
holds(x) where x is a condition. holds considers in the 
current execution context whether or not a condition holds. 
If there exists a temporal constraint e ∈ E that is not 
related to any task, holds(precond(e)), holds(incond(e)), 
and holds(effect(e)) are trivially true. 

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = false

≡ n1
e1

[10, 20] n2

 
Figure 4  Task with unmet preconditions 

n1 e1 n2

l(e1) = 10
u(e1) = 20
holds(precond(e1)) = true

≡ n1
e1

[10, 20] n2

 
Figure 5  Task with met preconditions 

Task Truncatability 

To represent that a task is potentially truncatable, we 
employ the use of the edge-predicate function truncatable. 
Note that truncatable(e) implies that if e is being executed, 
then we can truncate its execution as long as doing so does 
not force the execution of a task for which its 
preconditions do not hold. We assume that all free 
intervals can be truncated. truncatable(e) being true for 
some contingent e ∈ E (where e ∈ C) implies that although 
the completion time of e is under control of nature, its only 
purpose in the plan is to achieve the preconditions of the 
next step, and it may be truncated if these preconditions 
are already met. Thus truncatable provides us the semantic 
information we need to perform opportunistic execution.  

Henceforth we will concern ourselves only with 
truncatable edges. Any edge e ∈ E that is not truncatable 
is contingent, and only nature can determine the interval 
associated with it. We have no opportunities for skipping it 
and all possible intervals must be accommodated. 

Approach 

Execution Strategy 

Our overall strategy for execution is to execute timepoints 
as early as possible while accommodating the contingent 
intervals. We intend to show how to skip tasks during 
execution, but first we describe the naïve execution 



strategy. The naïve execution for task e = (n1, n2) proceeds 
thusly:  

(1) Wait until the start-time (n1) of the task may be 
legally assigned to the current time (henceforth 
referred to as now). 

(2) Wait until holds(precond(e)) is true. 

(3) Assign T(n1) to now, i.e., execute all tasks that n1 
is the starting timepoint. 

(4) Assume that holds(incond(e)) continues to be true 
until exec(n2) is assigned (otherwise an error in 
execution has occurred and should be handled as 
an exception).  

(5) Wait until the end-time (n2) of the task may be 
legally assigned to now. 

(6) Wait until all edges x = (n2, n) ∈ E, 
holds(precond(x)) is true (all tasks for which the 
end-time of e is the start-time have satisfied 
preconditions). 

(7) Assign T(n2) to now. 

(8) Assert effect(e). (Note: effects are not handled 
during execution as execution is concerned only 
with preconditions; thus the function effect is not 
pertinent to our discussion and will be dropped.) 

(9) Returning to the topic of waits, it is clear to see 
that waits can be implemented as part of the 
precond function. Since the system waits for 
preconditions to hold, each interval associated 
with the wait must be labeled as being contingent. 
It should be noted that, when combined, the 
precond and holds functions work as a monitor of 
the state of the world. 

Because this framework is built around the dynamic 
controllability of the STNU, it will execute properly if no 
free interval is actually contingent and all interval bounds 
are obeyed by nature. We will assume that this is the case; 
otherwise some form of plan recovery would be required. 
Plan recovery is outside the scope of this work. 

Simple disjunctive execution 

To handle certain types of disjunctions of tasks, we take 
advantage of an ambiguity in the semantics of time with 
respect to the preconditions, in-conditions, and effects of 
tasks. Under normal circumstances, the minimum duration 
of any task is some real value ε > 0. But, what does it mean 
semantically when a task is of zero duration? Nothing in 
the STNU requires tasks to be of greater than zero 
duration. For our work, we say that a task (or temporal 
constraint or interval) of zero duration is skipped. Thus, if 
we have a series of possibly zero-duration tasks, all of 
which are free, then, under certain criteria, we can skip 

them all. The remainder of this paper describes: 1) under 
which criteria tasks can be truncated or skipped, and 2) 
how to tractably execute a plan with skipping. 

Skipping Criteria 

In general, we assume that we can skip tasks as long as, in 
the end, the following conditions hold: 1) we introduce no 
violations of the temporal constraints in the STNU, 2) all 
newly executing tasks have their preconditions fulfilled, 
and 3) all currently executing tasks have their in-
conditions fulfilled.  

We need to identify threats to skipping. Knowing whether 
or not a temporal constraint violation would occur during 
execution is handled using the algorithms of [7]. If a task 
is started with its preconditions fulfilled, it is assumed that 
its in-conditions will hold during its execution, (otherwise 
this is an execution-time error that would need to be 
handled as an exception.) Thus, the remaining threat to 
skipping is the possibility of a newly executing task not 
having its preconditions fulfilled. 

If a timepoint n3 comes after or is simultaneous to another 
timepoint n1, then the assignment of exec(n3) to now 
implies the assignment of exec(n1) to now, thus forcing the 
execution of n1. If n1 has some outgoing edge e = (n1, n2) ∈ 
E where holds(precond(e)) is false, then executing n3 
causes e to fail. Of course, we might be able to skip e, but 
then we would have to check the out-degree of n2, etc., 
until we reached the end of our skipping opportunities. 
Thus, a threat to the execution of n3 is caused by any edge 
e = (n1, n2) ∈ E where the execution of n3 implies the 
execution of n1, n2 cannot be executed due to temporal 
constraints, and holds(precond(e)) is false. If no such edge 
exists, then no threats exist, and n3 can be executed. 

n1

n3

e
n2

 
Figure 6 -- Timepoint n1 threatens n3 

Threat propagation 

We can see from the previous discussion that the source of 
threats is the frontier of the skippable tasks. The frontier of 
skippable tasks are those constraints or tasks whose start-
times could be assigned to now, but whose end-times 
cannot be due to temporal constraints. Any task that is 
skippable is not the source of a threat per se—only tasks 
that are not skippable and for which their preconditions do 
not hold. It is also important to note that only tasks that are 
candidates to begin execution are sources of threats. Figure 



 
7 gives an example of the frontier. Task (n1, n2) is 
executing; Tasks (n2, n3), (n2, n4), (n3, n5), (n4, n5), and (n4, 
n6) are skippable (they could execute now), and tasks (n5, 
n7) and (n6, n7) are at the frontier. (Note: remember that 
unlabeled edges are ordering constraints.) 

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

Frontier

 
Figure 7  The execution frontier 

Theorem 1: The only sources of threats are tasks at the 
frontier of the collection of skippable tasks. 

Proof is by contradiction. Assume the contrary— all tasks 
at the frontier could execute but there exists a threat to 
execution in the set of tasks that could execute now. 
Therefore, there is a threat in the collection of skippable 
tasks, but all tasks e for which (a) the start-time is 
executable according to the STNU constraints and (b) the 
end-time is not, (c) holds(precond(e)) is true. Then, there 
must exist an e such that (d) its start-time is executable, (e) 
its end-time is executable, (f) holds(precond(e)) is false. 
We know d and e because this characterizes the rest of the 
executable tasks excluded by a and b. We know f because 
we presume a threat, and by c we know it is not at the 
frontier. But, if the end-time of a task is executable, it can 
be skipped, and the value of holds(precond(e)) is no source 
of a threat, but by our assumption it cannot be skipped. 
The only reason a task cannot be skipped is if it causes the 
execution of a start-time of a task e for which 
holds(precond(e)) is false. The entirety of the frontier can 
be executed (by c), thus any chain of skippable tasks leads 
to an executable task, leading us to a contradiction.  

Theorem 2: Threats propagate backward over a task e only 
when holds(precond(e)) is false. 

Proof: We exhaustively list the alternatives. Consider the 
tasks e1 = (n1, n2) and e2 = (n2, n3). e2 is a threat, thus 
holds(precond(e2)) is false, and n3 is not executable 
according to the constraints of the STNU.  

Case 1: holds(precond(e1)) is true and threats propagate 
backward. This is false because if holds(precond(e1)) and 
n1 is executable, then we can avoid the threat by executing 
n1 and not executing n2. Thus, threats do not propagate 
backward over tasks for which the preconditions hold. 

Case 2: holds(precond(e1)) is false and threats propagate 
backward. This is true because if we execute n1 we are in 
error because holds(precond(e1)) is false, and if we skip e1 

by executing n2 we are in error because holds(precond(e2)) 
is false.  

Figure 8 gives an example of the threat of (n6, n7) 
propagating backward to threaten n4, but does not threaten 
n2. 

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

x

 
Figure 8  Threats propagate backwards 

Theorem 3: Threats propagate forward over all tasks. 

Proof is by induction on the number of interceding tasks 
between a threat and any subsequent executable tasks. 
Clearly, as our previous example illustrates, the base case 
of a task e1 = (n1, n2) that begins executing causes the task 
ethreat = (n1, nthreat) to execute. Since ethreat is a threat 
(holds(precond(e)) is false and nthreat cannot be executed), 
but shares a start-time with e1, executing e1 would lead to 
the execution of ethreat, thus e1 is also a threat. Inductively, 
consider an additional em = (nm, nm+1). The base case 
reveals itself at each previous ex to em, leading to each ex 
being identified as a threat, until em-1 = (nm-1, nm) is 
identified as a threat. The induction closes with em being 
identified as a threat following the same argument as for 
e1. It should be noted that since all interceding tasks are 
skipped except for em, the preconditions of the interceding 
tasks have no effect. The preconditions of em also are not 
important, because even if holds(precond(em)) is true, 
executing nm leads to the execution of n1.  

Figure 9 shows threats propagating forward over (n4, n5) 
even though holds(precond((n4, n5)) is true. Note that 
propagation would continue to n3 according to Theorem 2. 

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

 
Figure 9  Forward propagation of threats 

Threat Propagation Algorithm 

Let us call the set of timepoints that can be executed now 
according to the constraints of the STNU Candidates ⊆ N. 
For all currently executing tasks e = (n1, n2) such that e ∈ 
C and truncatable(e) is also true and nature could assign 
T(n2) to now, we include n2 in Candidates. Let us call the 



set of edges that lie on the frontier of the candidates 
PossibleThreats. More formally, PossibleThreats ⊆ E such 
that for each e = (n1, n2) ∈ PossibleThreats, n1 ∈ 
Candidates and n2 ∉ Candidates. Let Threats ⊆ E be the 
set of edges that are known to be threats. We initialize 
Threats with every e ∈ PossibleThreats such that 
holds(precond(e)) is false (Theorem 1).  

We now propagate threats backward across each edge e ∈ 
Candidates such that holds(precond(e)) is false (Theorem 
2), adding each timepoint to Threats. We also propagate 
threats forward across each edge e ∈ Candidates 
regardless of its preconditions (Theorem 3). This can be 
accomplished in time that is linear in the number of edges 
in Candidates using a simple reachability algorithm on a 
transformed graph. After propagation, we have the entire 
set of threats. We execute all timepoints in Candidates that 
are not start-times for edges in Threats. 

n1 n2

[1,10]

n3 n7

n6

n5

n4

currently
executing could execute now cannot execute now

n2 n3

threat

n6

n5

n4

 
Figure 10 -- Reachability graph transformation 

The reachability graph GR = (NR, ER) is a directed graph. 
threat is a node not in N from which threats originate. It is 
from this node that we will compute reachability. 
NR=Candidates ∪ {threat}. For all e = (n1, n2) ∈ Threats 
(as calculated above before propagation), add an edge x = 
(n1, threat) to ER. For all e = (n1, n2) ∈ E such that n1 ∈ 
Candidates and n2 ∈ Candidates, add e to ER. If 
holds(precond(e)) is false, add (n2, n1) to ER. Compute 
reachability from threat, which results in a set of nodes X 
that are reachable from the source node, threat. Threats is 
equivalent to X. The time complexity of computing 
reachability is O(|N|lg|N|+|E|), using Dijkstra’s algorithm 
with a Fibonacci heap [1]. The space complexity is at most 
O(|N|). 

Examples 
This system is deployed in a real-world plan execution 
system. The problems solved by its design are very much a 
function of the types of problems that needed solving 
according the to requirements of domain modelers. Some 
useful examples of meta-structures used by modelers 

include series preconditional satisfaction and parallel 
preconditional satisfaction. 

Series preconditional satisfaction (SPS) is the idea that 
several tasks in series are used to achieve a goal, but if a 
precondition for any task later than the current executing 
task becomes satisfied, it is appropriate to skip all 
intervening tasks and execute the latest task that causes no 
threat. A specific example of this strategy is the 
“winnowing down” of a state requirement through a series 
of related tasks. For example, we might want to point a 
camera on a spacecraft towards a planet. This might 
require, in general, a series of operations that refine the 
pointing of the spacecraft. (See Figure 11.) But, if we are 
already opportunistically pointing at the planet, we might 
wish to skip steps to continue to our goal, (as in Figure 
12). 

n1 e1 n2 n3 n5n4e2 e4e3

precond(e3) = "pointing near Mars"
in-cond(e3) = "pointing near Mars"
effect(e3) = "accurately pointing at Mars"

precond(e4) =
  "accurately pointing at Mars"
in-cond(e4) =
  "accurately pointing at Mars"
effect(e4) =
  "picture taken of Mars"

precond(e2) = "not pointing at Sun"
in-cond(e2) = "not pointing at Sun"
effect(e2) = "pointing near Mars"

precond(e1) = "ok to point"
in-cond(e1) = "pointing"
effect(e1) = "not pointing at Sun"

 
Figure 11  SPS example 

n1 e1 n2 n3 n5n4e2 e4e3

currently
executing could execute now cannot execute now

n1 e1 n2 n3 n5n4e2 e4e3

currently executing could execute now
cannot
execute

now  
Figure 12  Execution of n2 and n3 

Additionally, SPS can be augmented to include the idea 
that at least one of the members of the series must be 
executed by inserting a temporal constraint from the 
beginning of the series to the end of the series of ∈ 
minimum duration, (as in Figure 13.) 

n1 e1 n2 n3 n5n4e2 e4e3

e5
[∈, ∞]  



 

Figure 13  At least one task must execute 

Parallel preconditional satisfaction (PPS) is the idea that 
several tasks in parallel are used to provide redundancy in 
hopes of satisfying a precondition. Once the precondition 
is met, the tasks might be truncated or skipped, depending 
upon whether or not the preconditions of each are satisfied. 
This allows one task that is ready to start to begin 
attempting to achieve the goal precondition while other 
tasks with the same general goal wait for their own 
preconditions to start. For example, we might want to 
ensure that the solar panels of a spacecraft are pointed to 
the sun. We have a number of ways of doing this, and we 
need only one way to succeed and thus will truncate any 
other executing tasks and skip pending tasks to continue on 
with charging the spacecraft. (See Figure 14 and Figure 
15.)  

n1 e1 n2

n3

n5n4

e2 e4

e3 e5

precond(e3) = "reaction wheels warm"
in-cond(e3) = "pointing"
effect(e3) = "pointing at Sun"

precond(e4) =  "thrusters warm"
in-cond(e4) =  "pointing"
effect(e4) =  "pointing at Sun"

precond(e5) =  "pointing at Sun"
in-cond(e5) =  "charging"
effect(e5) =  "battery charged"

precond(e1) = "reaction wheels ok"
in-cond(e1) = "warming reaction wheels"
effect(e1) = "reaction wheels warm"

precond(e2) =  "thrusters ok"
in-cond(e2) =  "warming thrusters"
effect(e2) =  "thrusters warm"

 
Figure 14  PPS example 

e1

e2 e4

e3

currently
executing could execute now cannot execute now

n1 n2

n3

n5n4 e5

e1

e2 e4

e3

currently executing
could

execute
now

cannot
execute

now

n1 n2

n3

n5n4 e5

 
Figure 15  Execution example 

Previous Work 
The seminal work on STNs is [2]. Previous work in STN 
and STNU execution includes the work of [6] where 
efficient algorithms for managing propagation were given 
and the notion of network dispatchability was introduced. 
[12] and [5] introduced the notions of various types of 

controllability for STNUs and proved that determining 
strong controllability for an STNU is in P while 
determining weak controllability is co-NP complete. 

[7] delivered the surprisingly tractable algorithm for 
determining dynamic controllability and executing a 
dynamically controllable STNU. [11] is extending this 
work to planning with shareable resources by handling 
some aspects of task sequencing at execution time (on-
line). 

[9] provides a description of conditional simple temporal 
networks (CSTNs). Even though we provide a weak form 
of conditional execution, our plans are not conditional in 
that all tasks are possible in a single context, meaning that 
we would have only one context label in a CSTN. Also, 
our work focuses on the execution of such plans as 
opposed to the verifiable construction of such plans. 

Conclusions 
We have described a tractable technique for reasoning 
about certain disjunctive conditions while executing a plan 
in metric time. We have presented a plan representation 
and an algorithm that, when combined with other existing 
algorithms, provides safe execution. We have provided as 
examples some useful STNU topologies from real-world 
examples. Our framework is deployed as part of the 
Mission Data System [3]. 
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